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ABSTRACT

Final Report: Biomolecular Mechanisms of Adaptive Reflectance and Related Biophotonic Systems in Molluscs

Report Title

We elucidated the complete biomolecular mechanism controlling dynamically tunable reflectance from skin cells of the squid, 
accomplishing all major objectives of our proposed research, with potential benefit to the Army in identifying new paths for improvements 
in lightweight solar cells, IR detectors, and recovery of waste heat through thermal photovoltaics. Accordion-like folds in the cell membrane 
filled with unique reflectin proteins form the lamellae of a tunable Bragg reflector. An acetylcholine (neurotransmitter)-triggered signal 
transduction cascade activates catalytic phosphorylation of specific amino acids in the reflectin proteins, driving conformational changes in 
the proteins that activate their condensation and hierarchical assembly.  The resulting occlusion of the reflectins’ surface charges triggers an 
efflux of small ions across the lamellar membranes, subsequently inducing a Gibbs-Donnan equilibration that drives expulsion of water, 
shrinking the thickness and spacing of the Bragg lamellae. The result is a simultaneous increase in the intensity of reflectance and a 
progressive change of color of the reflected light.  In related results suggesting a mechanism for improved efficiency of lightweight solar 
cells, we discovered that Mie-scattering from the reflectin-containing cells in Tridacnid giant clams redirects solar photons deep into the 
animal’s tissues, increasing the efficiency of photosynthesis by endosymbiotic microalgae.
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 Systems in Molluscs" 
 
Program Manger:  Dr. Stephanie A. McElhinny 
 
Reporting period:  6/1/10-8/31/14 
 
 
Scientific Objectives and Accomplishments: 

Scientific Objectives: 
Our objective was to discover and harness the previously unknown molecular mechanisms that govern the 
remarkable capabilities for dynamically tunable optical camouflage and   intraspecies communication in 
squid as a model for new materials and modalities for optoelectronic communication.  The immediate 
goals of this research were thus: (1) to identify the biomolecular and biophysical mechanisms responsible 
for neuronally activated changes in reflectin protein modification, conformation and assembly; and (2) to 
discover how these processes, in conjunction with other biomolecular and biophysical mechanisms, drive 
the dynamically tunable changes in the intensity and color of light reflected by the iridocyte cells in squid 
skin.  
 
Our long-term aim, beyond the scope of this present and insufficiently funded proposal, is to use the 
information obtained from this project to design and synthesize materials that translate the discovered 
biophotonic mechanisms into practical engineering, chemistry and physics. (Such translation of 
biomolecular mechanisms underlying the synthesis and performance of biomolecular materials has been 
the theme and motivation for my research for the past 2 decades, as exemplified first in my discoveries 
with the abalone shell, and then with the mechanism of biosilica synthesis, translating these to new routes 
for semiconductor synthesis.   
 

Accomplishments with Highest Importance and Relevance to Army Needs:   
We successfully achieved all of the major objectives as initially proposed.  
 
Cephalopods (e.g., octopus, squid and cuttlefish) manipulate light for camouflage and inter-individual 
signaling through a combination of tunable light scattering, pigmentation and reflection [1, 2].  The 
tunable reflectors responsible for the dynamic iridescence of the cephalopod’s skin are comprised of 
proteins called reflectins [3]; these are organized within stacks of intracellular, membrane-enclosed Bragg 
reflectors that in some contexts act as filters and in other contexts as reflectors [1-7].  In research 
supported by this grant and the Army-supported ICB over the past year, we discovered the complete 
molecular and biophysical mechanism driving this tunable and switchable biophotonic process, and 
confirmed that it can serve as the basis for a new approach to tunable and switchable polymer-based 
filters in the IR. 

 



We discovered the complex, multi-step sequential process controlling the dynamically tunable 
biophotonic performance of the reflective iridocyte cells in squid skin:  We found that the acetylcholine 
(neurotransmitter-triggered), signal transduction cascade-activated catalytic phosphorylation of specific 
amino acids in the reflectin proteins drives conformational changes in the proteins that activate their 
hierarchical assembly, simultaneously tuning the spacing, thickness and density (refractive index) of the 
thin protein layers and quickly driving changes in the transmission of light across the entire visible range 
[1, 2, 4, 5, 7].  The components and properties giving this biological system its remarkable and unique 
tunability of reflectance are the biopolymer’s inherent elasticity, conformability, and capacity for rapid 
and reversible assembly and disassembly, and the synergistic effects of changing both the density (i.e., 
refractive index) and thickness of the layers – thereby tuning both the intensity and color of the reflected 
light. Details are described below.  Applications of these findings to improvements in lightweight solar 
cells, IR detectors and recovery of waste heat through thermal photovoltaics are currently under active 
investigation via the ICB, in close collaboration with colleagues at the ARL. 
 
 Details of the Biomolecular and Biophysical Mechanisms of Tunable Biophotonics: 
The complete molecular mechanism governing the dynamically tunable reflectance in these cells is 
illustrated schematically in Figure 1 [redrawn from our publication [7] by the Editor of The Scientist [8], 
who selected our discovery and publication for special commendation]: In response to optical stimuli, 
release of the neurotransmitter, acetylcholine, (ACh,), from nerve endings ending in discrete patches of 
the skin, activates a muscarinic ACh receptor that in turn activates a receptor-coupled G-protein; this then 
activates a phospholipase- and calcium-controlled intracellular cascade of enzymatic amplifications of the 
stimulatory signal, culminating in activation of the enzymatic phosphorylation of specific reflectin 
proteins – the unique constituents of the tunable Bragg reflectors in squid skin [4, 5, 7]. Our two major 
discoveries this past year, allowing us to fully understand the molecular mechanism of optical tuning, are 
the facts that the Bragg Lamellae are formed by repeated invaginations of the cellular membrane, thus 
providing a high surface area interface between all parts of the tunable photonic structure and the external 
environment, and that this high surface area facilitates the rapid dehydration and rehydration of the Bragg 
lamellae, tuning their thickness and spacing to tune the wavelength of their reflected light [7]. We 
discovered that the signal-activated enzymatic phosphorylation of the reflectin proteins effectively 
neutralizes the excess positive charge carried by these proteins, thus overcoming their Coulombic, 
electrostatic charge repulsion, and permitting pi-pi interactions to now drive condensation of the proteins. 
This condensation of the reflectin proteins masks charges on the protein surfaces, causing a rapid efflux 
of small ions across the Bragg lamellar membranes to maintain electrostatic neutrality, which in turn 
causes a rapid and pronounced Gibbs-Donnan efflux of water from the Bragg lamellae to maintain 
osmotic equilibrium [7].  We accurately measured the reversible efflux of water from the Bragg lamellae, 
and the subsequent influx during the recovery of transparency, using D2O as a tracer (7).  



 
It is these changes (condensation of the reflectin proteins and consequent dehydration of the lamellae) that 
cause the rapid increase in the refractive index of the Bragg lamellae and the simultaneous decrease in the 
thickness of these Bragg reflectors, while simultaneously increasing the spacing between them (Figure 1) 
[5, 7].  This synergistic interaction thus rapidly increases the intensity of reflection and progressively 
changes the color of the reflected light – as we have quantified both microscopically and 
spectrophotometrically [2, 9, 10]. 
 
Using a micro-spectrophotometer of our own design, we independently measured the photonic parameters 
of the tunable Bragg lamellae as a function of their progressive condensation in the living reflective cells, 
and from these measurements obtained the first measures of the Bragg parameters independent of electron 
microscopy (requiring fixation and shrinkage of biological tissues) (Figure 2) [9, 10]. 
 

 
Results of these analyses (Figure 2) show that the tunable reflectors typically consist of 4-10 coherent 
Bragg lamellae, with the refractive index of the reflectin-filled lamellae in the living reflective cells 
progressively increasing from 1.34 in the “off” (transparent) state to 1.48 in the fully condensed and 
maximally reflective state. As expected, brightness is proportional to the refractive index contrast, and – 
as proof of the exceptional resolution of this method – at any given refractive index (i.e., state of 
condensation of the reflectin proteins), the contribution to brightness is greatest for those Bragg reflectors 

Figure 1.  Complete molecular mechanism 
governing the dynamically tunable reflectance in 
squid skin cells, as described in detail above.  From 
[7] and [8]. 

Figure 2. Maximum  reflectivity of 
live squid skin cell Bragg lamellae as a 
function of the refractive index of the 
lamellae, measured with the micro-
spectrophotometer developed in our 
lab. Data sorted by the measured 
number of lamellae in each reflector 
analyzed. From [9]. 



containing the most lamellae (Figure 2).  These results also demonstrate that the complete tuning of 
reflected color from red to blue is driven by the progressive reduction of the lamellar thickness of ca, 115 
nm (avg.) for the high-index reflectin-containing lamellae and ca. 85 nm (avg.) for the low-index inter-
lamellar spaces [9,10].  These wholly independent optical measurements also unequivocally show for the 
first time that prior measurements estimated from electron microscopy of dehydrated specimens were in 
error by ca. 25% as the inevitable result of shrinkage prior to imaging. 
 

Discovery of a Unified Mechanism:  
We discovered that female squid of the species we studied contain cells that can quickly switch 

from transparency to bright white reflectance [11].  These cells (named leucophores), contain the same 
reflectin proteins, neurotransmitter receptors and switchable signal transduction activators controlling 
reflectin condensation as we discovered in the tunable iridocytes discussed above, but the reflectins are 
organized in thousands of small, spherical vesicles, rather than in the Bragg lamellae formed by 
invaginations of the cell membrane as found in the tunable color-reflecting cells.  As a result, ACh-
activation of the condensation of the reflectins in these cells, and the consequent dehydration and change 
in volume and dimension of the reflectin-containing vesicles, results in a dramatic increase in the 
refractive index of the vesicles and – by virtue of their size and shape - the onset of Mie-scattering of all 
wavelengths, thus producing omnidirectional broadband reflectance of bright white (much like the metal 
oxide nanoparticles in white paint).  The reversible efflux of water is apparently facilitated by membrane 
conduits that we observed to communicate from each vesicle to the cell’s exterior [11].  Using the micro-
spectrophotometer described above, we determined that the refractive indices of these reflectin-containing 
vesicles in their transparent and white reflective states are identical to those in the corresponding states of 
the Bragg lamellar reflectors, as is the mechanism of their reflectin-mediated photonic control. While the 
molecular mechanism is the same in both types of reflective cells, the morphologies and dimensions of 
the dehydrated vesicles dictate that omnidirectional, broadband Mie scattering dominates their photonic 
behavior, yielding bright white reflectance.  A comparison of the tunable color and switchable white 
reflective systems in their corresponding transparent and reflective states is shown in Figure 3. 

 
 
 

New Biological Inspiration For Higher Efficiency, Lightweight Solar Cells:   
The efficiency of present solar cell materials and devices is limited by the efficiencies of photon capture 
and useful transduction; these in turn are limited in part by the depth of penetrance of solar photons in the 
absorptive, energy transducing material, thereby limiting the useful thickness of such materials to thin 
films. In contrast, we discovered, the light-exposed epithelium of tropical giant clams of the genus 
Tridacna (that depend for their nutrition on photosynthesis performed by symbiotic microalgae living 

Figure 3. Unified molecular and 
biophysical mechanism controlling 
both the tunable color and the 
switchable bright white reflectance 
in the squid skin iridocytes and 
leucophores. Although the 
underlying molecular mechanism 
driving both systems is the same, 
and governed by the same ACh 
neurotransmitter, reflectin proteins, 
and reflectin-governed dehydration,  
the mode of reflection (Bragg 
reflection or Mie scattering) and 
the visible consequences differ as a 
result of the differences in 
membrane architectures enclosing 
the reflectins.   From [11].  
 



within their tissues) contains a layer of bifunctional, bidirectionally reflective cells that use Mie scattering 
to deliver photosynthetically productive wavelengths of light deeper and laterally into the tissue of the 
host organism, while simultaneously using Bragg reflection to back-reflect non-productive wavelengths. 

 
Giant clams (genus Tridacna) derive much of their nutrition from photosynthesis by their endosymbiotic 
microalgae (genus Symbiodinium), yet the typical midday solar irradiance in their shallow tropical Pacific 
environment (ca. 1700 µmol quanta m-2 s-1) far exceeds the ca. 100 µmol quanta m-2 s-1 threshold for 
photo-inhibition in their algal symbionts. We discovered [12] that a layer of brightly reflective iridocyte 
cells in the Tridacnid’s mantel epithelium, through a combination of Mie-scattering and Bragg reflection, 
scatter the most photosynthetically productive wavelengths forward and laterally deeper into the clam 
tissue, redistributing this light onto the high surface area of vertically oriented pillars of the microalgae, 
while back-reflecting less productive wavelengths. Results of our direct radiometric measurements are 
confirmed by computational photonic modeling by Discrete Dipole Analysis, computation of the Henyey-
Greenstein phase function, and Monte Carlo modeling of radiative transfer in this complex photonic 
system [12].   
 
The measured high-efficiency redistribution of solar flux from the iridocyte layer to uniform illumination 
of the ca. 10-times higher surface area of the vertical algal pillars allows maximal capture efficiency of 
the solar photons, while stepping-down the incident flux on the algae by ca. 10-fold ensures maximal 
photosynthetic efficiency close to the algal optimum irradiance of ca. 85 µmol quanta m-2 s-1.  We 
determined that the resulting photodynamic tolerance and efficiency are far higher than possible without 
the redirection of light by these unique iridocytes.  
 
The results of the unique system of wavelength-selective forward scattering that we discovered in giant 
clams are illustrated in Figure 4. 

 

 
As shown here, direct radiometric measurements as a function of depth into the clam tissue [12] (Figure 
4, left and center) reveal that forward Mie scattering from the reflective cells (iridocytes) projects photons 
deeper and laterally into the tissue, enabling a greater volume of algal cells to perform photosynthesis 
than in the absence of the iridocytes. Calculations of the angle- and wavelength dependence of this 
forward scattering using the Henyey-Greenstein phase function [12] (Figure 4, right) confirm that the 
reflective cells direct photosynthetically productive wavelengths downward and laterally onto the high 
surface area of the vertical algal pillars.  These results are quantitatively confirmed by our independent 
predictions calculated from Lorenz-Mie Theory and Discrete Dipole Analysis [12]. The key to this high-

Figure 4. Enhancement of solar photon penetrance and capture in the biological “3-D solar cell” discovered in 
giant clams. (Left & center:) Scalar irradiance (total light intersecting a point from all directions) in the 
presence and absence of iridocytes. (Right:) Discrete Dipole Approximation-predicted phase function for the 
iridocyte Mie-scattering cells, on radial coordinates, showing forward-cone scattering behavior predicted for 
iridocytes. These data show significant back scattering for yellow light, but only forward scattering in red and 
blue, corresponding to our measurements. From [12 ].   
 



performance system is two-fold: (1) the unique trajectories of the Mie-scattered photons (Figure 4), and 
(2) the unique arrangement of the photosynthetic algae in “vertical” micropillars within the clam tissue, 
optimizing their interaction with the photosynthetically productive wavelengths that are scattered by the 
reflective cells deep and laterally into the tissue.  This unique vertical arrangement and 10-fold increase in 
photon-capturing surface area of the transducing algae results in the illumination of a higher density of 
useful solar transducers, and a higher efficiency in solar photon capture and photon transduction. Indeed, 
our micron-scale intra-tissue radiometry and optical modeling show that this biophotonic system results in 
a five-fold increase in photons reaching the microalgae compared to the tissue lacking the reflective cells 
[12]. This highly evolved “3-dimensional” biophotonic system of giant clams thus suggests a strategy and 
blueprint for more efficient, photo-bleaching-resistant solar cells and more spatially efficient solar 
production of algal biofuels. 
 
 Transition in Collaboration with ARL and Raytheon:  
Biology thus shows us that these exquisitely finely-tuned lightweight polymers  (proteins), when 
appropriately constrained in microstructured thin layers, can tune all the optical functionalities required 
by the Army for the applications to IR sensors and power generation conventionally provided by heavy, 
bulky, and in some cases noisy and power-hungry devices.  Guided by this biological inspiration, we have 
begun to transition the lessons learned from this research, in work supported through the ICB, and in 
collaboration with colleagues at ARL (SEDD) and Raytheon. to develop and optimize a family of 
synthetic polymeric thin films that exhibit electrically driven simultaneous changes in morphology and 
refractive index.  The lesson we deduce from the unified biological mechanism described above is that the 
synergistic interaction of two or more drivers of the optical change (i.e., the simultaneous change in 
refractive index contrast and morphology is more effective than any single change.  Translating this 
biological inspiration to device fabrication, in collaboration with our long-time colleagues at nearby 
Raytheon Vision Systems, we combined the effects of a Fabry-Perot cavity (increasing the effective path-
length or effective thickness of our optical polymer) with the  electrically switchable changes in 
absorption of our engineered electrochromic polymers, to achieve an exponential gain in responsiveness 
to small applied voltages [13, 14] Other potential applications currently under active investigation with 
colleagues at ARL SEDD include improved efficiency of lightweight solar cells and recovery of waste 
heat through higher efficiency IR (thermal) photovoltaics. 
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